

NIH System to System (S2S) “Client” Developer Guide

Version 1.1.0.0

S2S client installation guide

 Page 6/9/2006

© Copyright 2006, the National Institutes of Health, Bethesda, MD. All rights reserved.

2

 TABLE OF CONTENTS

Introduction... 3

Background ... 3

Prerequisites.. 5

Development System .. 5

Java Environment.. 5

Overview of Delivery Structure Mechanism .. 6

The Data Handler Mechanism with Hermes... 7

Schema and Transaction Notes... 9

Business Process Interactions ... 10

Configuration Tables .. 11

S2S client installation guide

 Page 6/9/2006

© Copyright 2006, the National Institutes of Health, Bethesda, MD. All rights reserved.

3

INTRODUCTION

Background
This document provides software developers with programming level details for the eRA

Exchange System-to-System Client (S2Sclient) software package. The aim is to allow

developers to quickly adapt the S2Sclient for their own local application needs. S2Sclient is

written in Java and so developers must be already familiar with creating Java software solutions.

The S2Sclient package is provided as a convenience to allow implementers to rapidly deploy a

baseline system and test that it operates correctly directly with the NIH S2S exchange server.

Implementers are responsible for configuring and adapting this baseline package to operate in

their own actual environments. Basic installation and setup instructions are provided for a

typical envisioned Windows server system. For details on installing and configuring the

S2Sclient see the separate installation guide document.

The S2Sclient provides two mechanisms for handling inbound and outbound transactions

directly with the NIH S2S exchange server environment. One mechanism is the delivery sub-

directory structure and the other is data handlers. The S2Sclient provided comes with data

handlers for each of the default message types. These can be replaced or extended and adapted

and the S2Sclient configuration setup to point to alternate data handlers. This guide gives

instructions on adapting and replacing data handlers and using the delivery sub-directory

structure.

The sub-directory mechanism includes automated delivery and receipt handling – this allows

manual testing of payload exchanges, as well as providing a simple integration mechanism. The

data handlers meanwhile provide for automated payload handling services implementation.

This document is intended to supplement the main documentation from Hermes and to provide a

quick start for the code samples provided with the S2Sclient. Developers seeking more in-depth

information should also reference the Hermes project documentation as well (copies of these

additional PDF files are included in the installation package under a \docs directory).

The package includes sample interfacing mechanisms and test messages to establish that the

S2Sclient is operating correctly with the eRA NIH server systems in both the Ext-UAT testing

area and the production environment.

The baseline functionality will be adapted and extended by eRA NIH and new S2Sclient

packages will then be made available with those new features and capabilities as required to

support the grants application processing.

Planned transactions include: Status request, Person information request, Person information

update, Validations service, Grant Verification image, and Notice of Grant Award transaction.

Normative XML W3C XSD-schema structures are provided that defines the layout and basic

content model for each transaction type. These schemas will be updated and added to as

necessary. Also sample messages are provided that conform the to schema layout structures.

S2S client installation guide

 Page 6/9/2006

© Copyright 2006, the National Institutes of Health, Bethesda, MD. All rights reserved.

4

The interchange model is shown below in Figure 1.

Figure 1 – Schematic of interchange models using the S2Sclient system.

Front end

Application(s)

Backend System

Backend DB
Staging DB

S2Sclient

Messaging

Server

Data Handler

MSH
Persistent
Storage

Operation

Log Files

Data Handler
Data Handlers

Hermes MSH

Delivery

Folders

XML
Transaction

Requestor

Internet

Incoming transactions are processed by matching data handler based on message type indicated

in the message envelope header and placed in the appropriate incoming folder.

Outgoing transactions are placed in the delivery folder for that message type; the data handler

listener service then picks up that transaction, packages it as a valid outbound message, then

passes it to the MSH for delivery and re-locates the original transaction to the corresponding

archive.

S2S client installation guide

 Page 6/9/2006

© Copyright 2006, the National Institutes of Health, Bethesda, MD. All rights reserved.

5

Prerequisites

Development System

The following is a summary of the development environment required to allow developers to

extend and modify the default S2Sclient package.

• Default environment:

o Operating Systems: Windows 2000/XP

o Application Servers: Tomcat 4.x is the default provided in the install package.

o Database Engines: DerbyDB is the default embedded SQL database used.

o Java Versions: 1.4.2 - Development Kit (SDK) version only (later versions are

currently not supported and do not work with the package as configured)

o Java software development environment to allow compilation and testing of modified

Java classes and programs.

This is the default environment that is installed as is. All the components such as Tomcat and

Derby are pre-configured. However this packaging is not the sole deployment environment.

Equivalent components may be substituted by implementers, based on their own local system

operational requirements. Examples include using different servlet services instead of Tomcat,

or different SQL compatible databases such as Oracle. Implementers are responsible for

configuring these changes themselves, however a wide variety of commonly available COTS

solutions are known to be compatible.

Java Environment

You will need to download and install the Java 1.4.x SDK system from Sun Microsystems

(http://java.sun.com/j2se/1.4.2/download.html). The JDK development environment must be

present to run the server environment (the JRE alone will *not* work), also newer JDKs will not

work because of the older version of TomCat is included in this NIH distribution. (Note: We

expect to upgrade at some point once we have completed baseline system verification).

See the separate setup and installation guide for details on configuring the Java environment

correctly.

S2S client installation guide

 Page 6/9/2006

© Copyright 2006, the National Institutes of Health, Bethesda, MD. All rights reserved.

6

Overview of Delivery Structure Mechanism

The main S2Sclient is configured to use a delivery sub-directory structure for outbound and

inbound transaction handling. Each message type has its own sub-directory branch.

S2S client installation guide

 Page 6/9/2006

© Copyright 2006, the National Institutes of Health, Bethesda, MD. All rights reserved.

7

The Data Handler Mechanism with Hermes

This figure shows the overall components within the data handler.

Figure 2 – Data Handler

Payload

Staging DB

Data Handler

Handler

Log

Message

Archive Log

Error Log

Error
Handler

Delivery

Methods

Send Message

Poll Outgoing

Folder for
Payload

Recv Message

Process

Business

Level
acknowledgement

Acknowledge

Receipt + error
status (optional)

Content

Checks

Outgoing

Folder

Payload

Included here in this document is sample source code for a default data handler. We now

discuss the source code and highlight those areas that can be configured to provide integration

with data stores and to implement business rules as required.

First we review the source code for the sample data handler and look at an example of simple

processing. In this case the code belongs to the class that simply copies the inbound transaction

into a file in the matching incoming folder directory for that message type.

S2S client installation guide

 Page 6/9/2006

© Copyright 2006, the National Institutes of Health, Bethesda, MD. All rights reserved.

8

The source code of the DefaultClientProcessor is listed below:

package gov.nih.cgaprefimpl.processor;

import gov.nih.cgaprefimpl.*;
import gov.nih.cgaprefimpl.stageddelivery.DefaultPayloadService;
import java.io.*;
import java.util.*;
import javax.activation.DataHandler;
import javax.activation.DataSource;

/**
 * This class is an example of a data handler.
*/

public class DefaultClientProcessor extends DefaultPayloadService {

 public void processPayloadReceipt(final MessageVO messageVO)
 throws Exception {
 log.info("Processing payload Receipt: " + messageVO);

 try {
 // store the payloads
 final Map payloadMap = messageVO.getPayloadMap();
 for (final Iterator payloadIterator = payloadMap.keySet().iterator();
 payloadIterator.hasNext();) {
 final String contentId = (String) payloadIterator.next();

 log.info("PayLoad Content Id: " + contentId);

 final String absolutePath =
 storePayload(contentId, payloadMap.get(contentId), messageVO.getCpaID(),
 messageVO.getConversationID(), messageVO.getAction());

 log.info("Stored payload in: " + absolutePath);

 String conversationID = messageVO.getConversationID();
 int i = conversationID.indexOf("_");
 String messageType = conversationID.substring(0,i);
 cat.debug("Message Type "+messageType);

 if(messageType.equals(S2SConstants.STATUS_QUERY))
 {
 StatusMessageProcessor st = new StatusMessageProcessor();
 st.process(messageVO,messageType);
 }else if(messageType.equals(S2SConstants.PERSON_QUERY))
 {
 PersonInfoMessageProcessor pi = new PersonInfoMessageProcessor();
 pi.process(messageVO,messageType);
 }else if(messageType.equals(S2SConstants.PERSON_UPDATE))
 {
 PersonUpdateProcessor pi = new PersonUpdateProcessor();
 pi.process(messageVO,messageType);
 }

 } // end for

 } catch (Exception e) {
 // send the error status
 log.error(e);
 } // end try catch
 } // end processPayloadReceipt(MessageVO)

 protected String storePayload(final String contentId,
 final Object payloadObject, final String fromCPA,
 final String conversationID, final String messageType)
 throws Exception {

 // store the payloadObject
 } catch (Exception e) {
 throw e;
 }
 return file.getAbsolutePath();
 } // end storePayload
}

S2S client installation guide

 Page 6/9/2006

© Copyright 2006, the National Institutes of Health, Bethesda, MD. All rights reserved.

9

The code first takes the incoming transaction and stores it into the appropriate received sub-

directory. After that validation or other processing is performed depending on the type of

incoming transaction identified by calling a specific message processor class. If an error occurs

it is logged accordingly and then the process returns.

Next we consider details of configuring the S2Sclient to use a specific message processor. In

this example there is first a main class that determines the type of transaction received and then

calls the matching message processor.

The message processor can then perform checking content values, referencing a backend

database and generating response messages and updating database tracking tables as needed.

Following this we next detail how to configure the S2Sclient to accept a new message processor

class for deployment.

Configuring the Data Handlers for Deployment

For deployment purposes the data handler class needs to access the MessageVO and

DefaultPayloadService classes and be configured in the appropriate mhs

processoragents.properties parameter file so that the ExchangeClient startup process will invoke

the new class. In the case of TomCat this class jar file most be located in the search path.

The default content of the parameter file is:

systemPingTestResponseToSP.class=gov.nih.cgaprefimpl.processor.DefaultClientProcessor
systemPingTestResponseErrToSP.class=gov.nih.cgaprefimpl.processor.DefaultClientProcessor

statusQueryResponseToSP.class=gov.nih.cgaprefimpl.processor.DefaultClientProcessor
statusQueryResponseErrToSP.class=gov.nih.cgaprefimpl.processor.DefaultClientProcessor

personQueryResponseToSP.class=gov.nih.cgaprefimpl.processor.DefaultClientProcessor
personQueryResponseErrToSP.class=gov.nih.cgaprefimpl.processor.DefaultClientProcessor

personUpdateResponseToSP.class=gov.nih.cgaprefimpl.processor.DefaultClientProcessor
personUpdateResponseErrToSP.class=gov.nih.cgaprefimpl.processor.DefaultClientProcessor

Each message type has its own mapping to invoke a class. Currently all the incoming messages

invokes the default class
“gov.nih.cgaprefimpl.processor.DefaultClientProcessor”.

This can be replaced with any other class. The new class has to be available in Tomcat (or

whichever app server is being used) classpath location directory.

The next section looks at actual schema structures for the transactions.

Schema and Transaction Notes

The following schemas are currently implemented and their associated transactions:

• personinforequest

• personinforesponse

• personinfoupdaterequest

S2S client installation guide

 Page 6/9/2006

© Copyright 2006, the National Institutes of Health, Bethesda, MD. All rights reserved.

10

• status_schema

In addition these schemas provide common definitions:

• commontypes

• nihschema

• rarschema

The documentation for S2S transactions is provided in separate documents that detail the actual

interchanges that are supported. (Note: The transactions and documentation are under

development.)

Business Process Interactions

The following table shows the current business process interactions supported.

Each request is followed by a matching response transaction, or an error transaction.

Process Request Transaction Response

Person Information Request personinforequest personinforesponse

Person Information Update personinfoupdaterequest personinforesponse; with
pires:RequestID = “UPDATE”

Application Status Request status_schema – request elements status_schema – with
response elements completed

S2S client installation guide

 Page 6/9/2006

© Copyright 2006, the National Institutes of Health, Bethesda, MD. All rights reserved.

11

Configuration Tables

The S2Sclient data handlers are controlled by various configuration tables – these are itemized

here. Advanced users may manually edit these tables as needed to change the setup and

operations of the S2Sclient.

Filename Location Description

Web.xml ..\jakarta-tomcat-
4.1.31\webapps\refi
mpl\WEB-INF\

CGAP startup servlet

exchangeclient.properties ..\jakarta-tomcat-
4.1.31\webapps\refi
mpl\WEB-
INF\classes\

#CPA File Location

cpa.file.location=c:/S2SClient/cpa.xml

What directory are the files Picked up from

watch.directory=c:/S2SClient/watchdirectory

What is the interval in which to check that

directory (milliseconds)

polling.interval=5000

Destination CPA - hard wired for LRP

CPA

destination.cpa=LRPCPA

supported.message.types=

systemPingTest, statusQuery, personQuery,

personUpdate

messageHandlerFactory.pro

perties

 Associates the transaction type with the

handler class

processoragents.properties Class / processor mapping for message

handlers

startup.properties Invokes startup handler classes

stageddelivery.properties Specifies the staged delivery message

handler (pulled message handling)

